\(\int (a+b x^n)^2 (c+d x^n)^{-3-\frac {1}{n}} \, dx\) [322]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 116 \[ \int \left (a+b x^n\right )^2 \left (c+d x^n\right )^{-3-\frac {1}{n}} \, dx=\frac {x \left (a+b x^n\right )^2 \left (c+d x^n\right )^{-2-\frac {1}{n}}}{c (1+2 n)}+\frac {2 a n x \left (a+b x^n\right ) \left (c+d x^n\right )^{-1-\frac {1}{n}}}{c^2 (1+n) (1+2 n)}+\frac {2 a^2 n^2 x \left (c+d x^n\right )^{-1/n}}{c^3 (1+n) (1+2 n)} \]

[Out]

x*(a+b*x^n)^2*(c+d*x^n)^(-2-1/n)/c/(1+2*n)+2*a*n*x*(a+b*x^n)*(c+d*x^n)^(-1-1/n)/c^2/(2*n^2+3*n+1)+2*a^2*n^2*x/
c^3/(2*n^2+3*n+1)/((c+d*x^n)^(1/n))

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {386, 197} \[ \int \left (a+b x^n\right )^2 \left (c+d x^n\right )^{-3-\frac {1}{n}} \, dx=\frac {2 a^2 n^2 x \left (c+d x^n\right )^{-1/n}}{c^3 (n+1) (2 n+1)}+\frac {2 a n x \left (a+b x^n\right ) \left (c+d x^n\right )^{-\frac {1}{n}-1}}{c^2 (n+1) (2 n+1)}+\frac {x \left (a+b x^n\right )^2 \left (c+d x^n\right )^{-\frac {1}{n}-2}}{c (2 n+1)} \]

[In]

Int[(a + b*x^n)^2*(c + d*x^n)^(-3 - n^(-1)),x]

[Out]

(x*(a + b*x^n)^2*(c + d*x^n)^(-2 - n^(-1)))/(c*(1 + 2*n)) + (2*a*n*x*(a + b*x^n)*(c + d*x^n)^(-1 - n^(-1)))/(c
^2*(1 + n)*(1 + 2*n)) + (2*a^2*n^2*x)/(c^3*(1 + n)*(1 + 2*n)*(c + d*x^n)^n^(-1))

Rule 197

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^(p + 1)/a), x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rule 386

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[(-x)*(a + b*x^n)^(p + 1)*(
(c + d*x^n)^q/(a*n*(p + 1))), x] - Dist[c*(q/(a*(p + 1))), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1), x], x]
 /; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[n*(p + q + 1) + 1, 0] && GtQ[q, 0] && NeQ[p, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {x \left (a+b x^n\right )^2 \left (c+d x^n\right )^{-2-\frac {1}{n}}}{c (1+2 n)}+\frac {(2 a n) \int \left (a+b x^n\right ) \left (c+d x^n\right )^{-2-\frac {1}{n}} \, dx}{c (1+2 n)} \\ & = \frac {x \left (a+b x^n\right )^2 \left (c+d x^n\right )^{-2-\frac {1}{n}}}{c (1+2 n)}+\frac {2 a n x \left (a+b x^n\right ) \left (c+d x^n\right )^{-1-\frac {1}{n}}}{c^2 (1+n) (1+2 n)}+\frac {\left (2 a^2 n^2\right ) \int \left (c+d x^n\right )^{-1-\frac {1}{n}} \, dx}{c^2 (1+n) (1+2 n)} \\ & = \frac {x \left (a+b x^n\right )^2 \left (c+d x^n\right )^{-2-\frac {1}{n}}}{c (1+2 n)}+\frac {2 a n x \left (a+b x^n\right ) \left (c+d x^n\right )^{-1-\frac {1}{n}}}{c^2 (1+n) (1+2 n)}+\frac {2 a^2 n^2 x \left (c+d x^n\right )^{-1/n}}{c^3 (1+n) (1+2 n)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.14 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.97 \[ \int \left (a+b x^n\right )^2 \left (c+d x^n\right )^{-3-\frac {1}{n}} \, dx=\frac {x \left (c+d x^n\right )^{-2-\frac {1}{n}} \left (b^2 c^2 (1+n) x^{2 n}+2 a b c x^n \left (c+2 c n+d n x^n\right )+a^2 \left (c^2 \left (1+3 n+2 n^2\right )+2 c d n (1+2 n) x^n+2 d^2 n^2 x^{2 n}\right )\right )}{c^3 (1+n) (1+2 n)} \]

[In]

Integrate[(a + b*x^n)^2*(c + d*x^n)^(-3 - n^(-1)),x]

[Out]

(x*(c + d*x^n)^(-2 - n^(-1))*(b^2*c^2*(1 + n)*x^(2*n) + 2*a*b*c*x^n*(c + 2*c*n + d*n*x^n) + a^2*(c^2*(1 + 3*n
+ 2*n^2) + 2*c*d*n*(1 + 2*n)*x^n + 2*d^2*n^2*x^(2*n))))/(c^3*(1 + n)*(1 + 2*n))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(587\) vs. \(2(116)=232\).

Time = 4.51 (sec) , antiderivative size = 588, normalized size of antiderivative = 5.07

method result size
parallelrisch \(\frac {2 x \,x^{3 n} \left (c +d \,x^{n}\right )^{-\frac {1+3 n}{n}} a^{2} d^{3} n^{2}+2 x \,x^{3 n} \left (c +d \,x^{n}\right )^{-\frac {1+3 n}{n}} a b c \,d^{2} n +x \,x^{3 n} \left (c +d \,x^{n}\right )^{-\frac {1+3 n}{n}} b^{2} c^{2} d n +6 x \,x^{2 n} \left (c +d \,x^{n}\right )^{-\frac {1+3 n}{n}} a^{2} c \,d^{2} n^{2}+x \,x^{3 n} \left (c +d \,x^{n}\right )^{-\frac {1+3 n}{n}} b^{2} c^{2} d +2 x \,x^{2 n} \left (c +d \,x^{n}\right )^{-\frac {1+3 n}{n}} a^{2} c \,d^{2} n +6 x \,x^{2 n} \left (c +d \,x^{n}\right )^{-\frac {1+3 n}{n}} a b \,c^{2} d n +x \,x^{2 n} \left (c +d \,x^{n}\right )^{-\frac {1+3 n}{n}} b^{2} c^{3} n +6 x \,x^{n} \left (c +d \,x^{n}\right )^{-\frac {1+3 n}{n}} a^{2} c^{2} d \,n^{2}+2 x \,x^{2 n} \left (c +d \,x^{n}\right )^{-\frac {1+3 n}{n}} a b \,c^{2} d +x \,x^{2 n} \left (c +d \,x^{n}\right )^{-\frac {1+3 n}{n}} b^{2} c^{3}+5 x \,x^{n} \left (c +d \,x^{n}\right )^{-\frac {1+3 n}{n}} a^{2} c^{2} d n +4 x \,x^{n} \left (c +d \,x^{n}\right )^{-\frac {1+3 n}{n}} a b \,c^{3} n +2 x \left (c +d \,x^{n}\right )^{-\frac {1+3 n}{n}} a^{2} c^{3} n^{2}+x \,x^{n} \left (c +d \,x^{n}\right )^{-\frac {1+3 n}{n}} a^{2} c^{2} d +2 x \,x^{n} \left (c +d \,x^{n}\right )^{-\frac {1+3 n}{n}} a b \,c^{3}+3 x \left (c +d \,x^{n}\right )^{-\frac {1+3 n}{n}} a^{2} c^{3} n +x \left (c +d \,x^{n}\right )^{-\frac {1+3 n}{n}} a^{2} c^{3}}{\left (1+n \right ) \left (1+2 n \right ) c^{3}}\) \(588\)

[In]

int((a+b*x^n)^2*(c+d*x^n)^(-3-1/n),x,method=_RETURNVERBOSE)

[Out]

(2*x*(x^n)^3*(c+d*x^n)^(-(1+3*n)/n)*a^2*d^3*n^2+2*x*(x^n)^3*(c+d*x^n)^(-(1+3*n)/n)*a*b*c*d^2*n+x*(x^n)^3*(c+d*
x^n)^(-(1+3*n)/n)*b^2*c^2*d*n+6*x*(x^n)^2*(c+d*x^n)^(-(1+3*n)/n)*a^2*c*d^2*n^2+x*(x^n)^3*(c+d*x^n)^(-(1+3*n)/n
)*b^2*c^2*d+2*x*(x^n)^2*(c+d*x^n)^(-(1+3*n)/n)*a^2*c*d^2*n+6*x*(x^n)^2*(c+d*x^n)^(-(1+3*n)/n)*a*b*c^2*d*n+x*(x
^n)^2*(c+d*x^n)^(-(1+3*n)/n)*b^2*c^3*n+6*x*x^n*(c+d*x^n)^(-(1+3*n)/n)*a^2*c^2*d*n^2+2*x*(x^n)^2*(c+d*x^n)^(-(1
+3*n)/n)*a*b*c^2*d+x*(x^n)^2*(c+d*x^n)^(-(1+3*n)/n)*b^2*c^3+5*x*x^n*(c+d*x^n)^(-(1+3*n)/n)*a^2*c^2*d*n+4*x*x^n
*(c+d*x^n)^(-(1+3*n)/n)*a*b*c^3*n+2*x*(c+d*x^n)^(-(1+3*n)/n)*a^2*c^3*n^2+x*x^n*(c+d*x^n)^(-(1+3*n)/n)*a^2*c^2*
d+2*x*x^n*(c+d*x^n)^(-(1+3*n)/n)*a*b*c^3+3*x*(c+d*x^n)^(-(1+3*n)/n)*a^2*c^3*n+x*(c+d*x^n)^(-(1+3*n)/n)*a^2*c^3
)/(1+n)/(1+2*n)/c^3

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 231, normalized size of antiderivative = 1.99 \[ \int \left (a+b x^n\right )^2 \left (c+d x^n\right )^{-3-\frac {1}{n}} \, dx=\frac {{\left (2 \, a^{2} d^{3} n^{2} + b^{2} c^{2} d + {\left (b^{2} c^{2} d + 2 \, a b c d^{2}\right )} n\right )} x x^{3 \, n} + {\left (6 \, a^{2} c d^{2} n^{2} + b^{2} c^{3} + 2 \, a b c^{2} d + {\left (b^{2} c^{3} + 6 \, a b c^{2} d + 2 \, a^{2} c d^{2}\right )} n\right )} x x^{2 \, n} + {\left (6 \, a^{2} c^{2} d n^{2} + 2 \, a b c^{3} + a^{2} c^{2} d + {\left (4 \, a b c^{3} + 5 \, a^{2} c^{2} d\right )} n\right )} x x^{n} + {\left (2 \, a^{2} c^{3} n^{2} + 3 \, a^{2} c^{3} n + a^{2} c^{3}\right )} x}{{\left (2 \, c^{3} n^{2} + 3 \, c^{3} n + c^{3}\right )} {\left (d x^{n} + c\right )}^{\frac {3 \, n + 1}{n}}} \]

[In]

integrate((a+b*x^n)^2*(c+d*x^n)^(-3-1/n),x, algorithm="fricas")

[Out]

((2*a^2*d^3*n^2 + b^2*c^2*d + (b^2*c^2*d + 2*a*b*c*d^2)*n)*x*x^(3*n) + (6*a^2*c*d^2*n^2 + b^2*c^3 + 2*a*b*c^2*
d + (b^2*c^3 + 6*a*b*c^2*d + 2*a^2*c*d^2)*n)*x*x^(2*n) + (6*a^2*c^2*d*n^2 + 2*a*b*c^3 + a^2*c^2*d + (4*a*b*c^3
 + 5*a^2*c^2*d)*n)*x*x^n + (2*a^2*c^3*n^2 + 3*a^2*c^3*n + a^2*c^3)*x)/((2*c^3*n^2 + 3*c^3*n + c^3)*(d*x^n + c)
^((3*n + 1)/n))

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1035 vs. \(2 (104) = 208\).

Time = 12.92 (sec) , antiderivative size = 1035, normalized size of antiderivative = 8.92 \[ \int \left (a+b x^n\right )^2 \left (c+d x^n\right )^{-3-\frac {1}{n}} \, dx=\text {Too large to display} \]

[In]

integrate((a+b*x**n)**2*(c+d*x**n)**(-3-1/n),x)

[Out]

2*a**2*c**2*c**(1/n)*c**(-3 - 2/n)*n**2*x*gamma(1/n)/(c**2*n**3*(1 + d*x**n/c)**(1/n)*gamma(3 + 1/n) + 2*c*d*n
**3*x**n*(1 + d*x**n/c)**(1/n)*gamma(3 + 1/n) + d**2*n**3*x**(2*n)*(1 + d*x**n/c)**(1/n)*gamma(3 + 1/n)) + 3*a
**2*c**2*c**(1/n)*c**(-3 - 2/n)*n*x*gamma(1/n)/(c**2*n**3*(1 + d*x**n/c)**(1/n)*gamma(3 + 1/n) + 2*c*d*n**3*x*
*n*(1 + d*x**n/c)**(1/n)*gamma(3 + 1/n) + d**2*n**3*x**(2*n)*(1 + d*x**n/c)**(1/n)*gamma(3 + 1/n)) + a**2*c**2
*c**(1/n)*c**(-3 - 2/n)*x*gamma(1/n)/(c**2*n**3*(1 + d*x**n/c)**(1/n)*gamma(3 + 1/n) + 2*c*d*n**3*x**n*(1 + d*
x**n/c)**(1/n)*gamma(3 + 1/n) + d**2*n**3*x**(2*n)*(1 + d*x**n/c)**(1/n)*gamma(3 + 1/n)) + 4*a**2*c*c**(1/n)*c
**(-3 - 2/n)*d*n**2*x*x**n*gamma(1/n)/(c**2*n**3*(1 + d*x**n/c)**(1/n)*gamma(3 + 1/n) + 2*c*d*n**3*x**n*(1 + d
*x**n/c)**(1/n)*gamma(3 + 1/n) + d**2*n**3*x**(2*n)*(1 + d*x**n/c)**(1/n)*gamma(3 + 1/n)) + 2*a**2*c*c**(1/n)*
c**(-3 - 2/n)*d*n*x*x**n*gamma(1/n)/(c**2*n**3*(1 + d*x**n/c)**(1/n)*gamma(3 + 1/n) + 2*c*d*n**3*x**n*(1 + d*x
**n/c)**(1/n)*gamma(3 + 1/n) + d**2*n**3*x**(2*n)*(1 + d*x**n/c)**(1/n)*gamma(3 + 1/n)) + 2*a**2*c**(1/n)*c**(
-3 - 2/n)*d**2*n**2*x*x**(2*n)*gamma(1/n)/(c**2*n**3*(1 + d*x**n/c)**(1/n)*gamma(3 + 1/n) + 2*c*d*n**3*x**n*(1
 + d*x**n/c)**(1/n)*gamma(3 + 1/n) + d**2*n**3*x**(2*n)*(1 + d*x**n/c)**(1/n)*gamma(3 + 1/n)) + 4*a*b*c*c**(-3
 - 1/n)*c**(1 + 1/n)*n*(c/(d*x**n) + 1)**(-1 - 1/n)*gamma(1 + 1/n)/(c*d**(1 + 1/n)*n**2*gamma(3 + 1/n) + d*d**
(1 + 1/n)*n**2*x**n*gamma(3 + 1/n)) + 2*a*b*c*c**(-3 - 1/n)*c**(1 + 1/n)*(c/(d*x**n) + 1)**(-1 - 1/n)*gamma(1
+ 1/n)/(c*d**(1 + 1/n)*n**2*gamma(3 + 1/n) + d*d**(1 + 1/n)*n**2*x**n*gamma(3 + 1/n)) + 2*a*b*c**(-3 - 1/n)*c*
*(1 + 1/n)*d*n*x**n*(c/(d*x**n) + 1)**(-1 - 1/n)*gamma(1 + 1/n)/(c*d**(1 + 1/n)*n**2*gamma(3 + 1/n) + d*d**(1
+ 1/n)*n**2*x**n*gamma(3 + 1/n)) + b**2*c**(-3 - 1/n)*c**(2 + 1/n)*d**(-2 - 1/n)*(c/(d*x**n) + 1)**(-2 - 1/n)*
gamma(2 + 1/n)/(n*gamma(3 + 1/n))

Maxima [F]

\[ \int \left (a+b x^n\right )^2 \left (c+d x^n\right )^{-3-\frac {1}{n}} \, dx=\int { {\left (b x^{n} + a\right )}^{2} {\left (d x^{n} + c\right )}^{-\frac {1}{n} - 3} \,d x } \]

[In]

integrate((a+b*x^n)^2*(c+d*x^n)^(-3-1/n),x, algorithm="maxima")

[Out]

integrate((b*x^n + a)^2*(d*x^n + c)^(-1/n - 3), x)

Giac [F(-2)]

Exception generated. \[ \int \left (a+b x^n\right )^2 \left (c+d x^n\right )^{-3-\frac {1}{n}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((a+b*x^n)^2*(c+d*x^n)^(-3-1/n),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Unable to divide, perhaps due to rounding error%%%{8,[1,0,4,3,1,3,2,0]%%%}+%%%{12,[1,0,4,2,1,3,2,0]%%%}+%%%
{6,[1,0,4,1

Mupad [F(-1)]

Timed out. \[ \int \left (a+b x^n\right )^2 \left (c+d x^n\right )^{-3-\frac {1}{n}} \, dx=\int \frac {{\left (a+b\,x^n\right )}^2}{{\left (c+d\,x^n\right )}^{\frac {1}{n}+3}} \,d x \]

[In]

int((a + b*x^n)^2/(c + d*x^n)^(1/n + 3),x)

[Out]

int((a + b*x^n)^2/(c + d*x^n)^(1/n + 3), x)